
Recent advances in non-invasive prenatal DNA diagnosis
through analysis of maternal blood

Akihiko Sekizawa,* Yuditiya Purwosunu, Ryu Matsuoka, Keiko Koide, Shiho Okazaki,
Antonio Farina, Hiroshi Saito and Takashi Okai
Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan

Abstract

Prenatal diagnosis of aneuploidy and single-gene disorders is usually performed by collecting fetal samples
through amniocentesis or chorionic villus sampling. However, these invasive procedures are associated with
some degree of risk to the fetus and/or mother. Therefore, in recent years, considerable effort has been made
to develop non-invasive prenatal diagnostic procedures. One potential non-invasive approach involves analy-
sis of cell-free fetal DNA in maternal plasma or serum. Another approach utilizes fetal cells within the maternal
circulation as a source of fetal DNA. At the present time, fetal gender and fetal RhD blood type within
RhD-negative pregnant women can be reliably determined through analysis of maternal plasma. Furthermore,
genetic alterations can be diagnosed in the maternal plasma when the mother does not have the alterations.
However, the diagnosis of maternally inherited genetic disease and aneuploidy is limited using this approach.
Non-invasive prenatal diagnosis through examination of intact fetal cells circulating within maternal blood can
be used to diagnose a full range of genetic disorders. Since only a limited number of fetal cells circulate within
maternal blood, procedures to enrich the cells and enable single cell analysis with high sensitivity are required.
Recently, separation methods, including a lectin-based method and autoimage analyzing, have been devel-
oped, which have improved the sensitivity of genetic analysis. This progress has supported the possibility of
non-invasive prenatal diagnosis of genetic disorders. In the present article, we discuss recent advances in the
field of non-invasive prenatal diagnosis.
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Introduction

Prenatal diagnosis is an established part of modern
obstetrics. In the absence of prenatal diagnosis, 1 in 50
babies are born with serious physical or mental
handicaps, and as many as 1 in 30 have some form of
congenital malformation.1 This may be the result of
structural or chromosomal abnormalities, or single-
gene disorders. In the 1950s, genetic counseling was
the only modality available. For prenatal diagnosis, at
that time, couples could be provided with a recur-
rence risk in the few recognized Mendelian condi-

tions, but otherwise no diagnosis could be made, and
no intervention was possible. In 1968, this situation
changed when amniocentesis started being performed
for diagnostic purposes. In 1984, first-trimester prena-
tal diagnosis via chorionic villus sampling (CVS) was
shown to be a feasible alternative and as safe as
amniocentesis.2 In fact, over the past 25 years a
number of methods for prenatal diagnosis of genetic
disorders have become available and are used in labo-
ratory research and clinical genetics. Prenatal diagno-
sis of aneuploidy and single-gene disorders is usually
performed by collecting fetal samples through
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amniocentesis or CVS. However, both of these proce-
dures are associated with some degree of risk to the
fetus and/or mother. For example, abortion owing to
hemorrhage or infection occurs in 0.2–0.4% of preg-
nancies in which amniocentesis is performed. Further-
more, CVS carries a potential risk of fetal limb
malformation in 0.01–0.03% of cases.3 Prenatal diag-
nosis is thus generally considered when the perceived
risk of an abnormal pregnancy as estimated by mater-
nal age, maternal serum biochemistry and/or fetal
ultrasonography, outweighs the procedure-related
miscarriage risk. Therefore, recent efforts have been
directed toward less invasive approaches for prenatal
diagnosis. Currently, the most utilized strategy for
detecting aneuploidy is mid-trimester maternal serum
screening using human chorionic gonadotrophin
(hCG), estriol (E3), and alpha-fetoprotein (AFP), fol-
lowed by amniocentesis in screen-positive cases. The
serum tests detect approximately 60% of cases of
trisomy 21 with a calculated false positive rate of 5%.4

Although addition of another marker, such as diamet-
ric inhibin A, increases the sensitivity to 75%,5 serum
testing still does not provide a definitive diagnosis;
rather, it estimates a woman’s adjusted (or posterior)
risk of various chromosomal aneuploidies. Another
method by which to screen for fetal trisomy 21 is
sonography to measure the thickness of a fluid-filled
space behind the fetal neck, otherwise known as the
nuchal translucency (NT) measurement. In a study of
96 127 singleton pregnancies, combining the risk of
maternal age with the NT measurement enabled
detection of 77% of fetuses with trisomy 21 with a 5%
false positive rate.6 Furthermore, ultrasound detected
an absence of the nasal bone in approximately 65% of
fetuses with trisomy 21 and in 1% of fetuses with a
normal karyotype.7 Combining absence of the nasal
bone with first-trimester NT and serum screening
scores resulted in detection of 90% of fetuses with
Down syndrome with a false-positive rate of 5%.8

However, while these approaches are useful in
screening for Down syndrome, they have limited
application in diagnosing fetal aneuploidy.

In recent years, considerable effort has been
directed toward the development of non-invasive pre-
natal diagnostic methods. One potential non-invasive
approach involves analysis of cell-free (extracellular)
fetal DNA within maternal plasma or serum. The
other approach utilizes fetal cells within the maternal
circulation as a source of fetal DNA. In this article, we
discuss recent advances in non-invasive fetal DNA
diagnosis.

Fetal DNA in plasma and its use in prenatal
DNA diagnosis

Human plasma has been regarded as an unlikely
source of genetic material for a long time, except in the
field of virology. In 1948, Mandel and Metais9 reported
the presence of nucleic acid within the plasma of both
healthy and sick individuals. In the serum of patients
with systemic lupus erythematosus,10 rheumatoid
arthritis,11 and cancer,12 high levels of circulating DNA
have been reported. In 1996, Nawroz et al.13 and Chen
et al.14 simultaneously reported DNA molecules with
tumor-specific characteristics within the plasma and
serum of patients with cancer, giving rise to the possi-
bility of serum as a source of DNA. A new area of
research followed the discovery of large amounts of
circulating cell-free fetal DNA within maternal plasma
and serum. In 1997, Lo et al. demonstrated that cell-free
fetal DNA circulates within the plasma and serum of
pregnant women.15 Real-time polymerase chain reac-
tion (PCR) was used to quantify the amount of fetal
DNA by targeting SRY, a single-copy Y-chromosome-
specific sequence, in pregnant women carrying male
fetuses.16 Surprisingly, high mean concentrations of
fetal DNA (3.4–6.2%) in total maternal plasma DNA
were demonstrated. A mean of 25.4 copies of fetal DNA
in 1 mL of maternal plasma was detected in early ges-
tation, a much higher concentration than that of fetal
cells in maternal blood.16 We also quantified fetal DNA
in the plasma of 156 pregnant women at 7–16 weeks. A
median of 36.5 genome-equivalents (GE) of fetal DNA
was detected per milliliter of plasma.17 Since the half-
life of fetal DNA in maternal plasma is reportedly
16.3 min,18 fetal DNA is a suitable target for prenatal
DNA diagnosis without being affected by any previ-
ous pregnancies.

Fetal gender determination

Fetal DNA was initially used for determination of fetal
gender16,17 and fetal rhesus D (RhD) blood type.19 The
detection of Y-chromosome-specific sequences indi-
cated a male fetus. Their absence indicated female sex.
Tang et al. further positively identified female fetuses
through detection of paternally inherited short tandem
repeats (STR) on the X chromosome within maternal
plasma.20 Y-chromosome-specific sequences, such as
SRY,16 DYS14,15,17 and DAZ21 loci are commonly used to
detect fetal gender. In 2001, we assessed fetal gender
using maternal blood samples from 302 pregnant
women at 7–16 weeks gestation, the largest sample size
to date. The Y-chromosome-specific DYS14 sequence
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was amplified using real-time quantitative PCR, based
on which fetal gender was determined.17 Fetal gender
was determined in 298 of 302 cases with an overall
sensitivity of 97.2%, specificity of 100%, and positive
and negative predictive values of 100% and 97.5%,
respectively, for identification of a male fetus.17 Since
the DYS14 sequence was then detected on re-analysis
of plasma samples from all four false negative cases,
fetal DNA is likely present within the plasma of all
pregnant women, providing an accurate and reliable
method for determination of fetal gender at �7 weeks
gestation.17 Identification of fetal gender via this non-
invasive technique can reduce the number of invasive
procedures required to examine X-linked genetic
disorders. To limit invasive prenatal testing for identi-
fication of X-linked genetic diseases or ambiguous
development of the external genitalia, non-invasive
prenatal diagnosis of fetal gender using maternal
plasma has been performed in pregnancies at risk for
congenital adrenal hyperplasia and X-linked recessive
disorders, such as Duchenne muscular dystrophy and
hemophilia, and the usefulness and accuracy of this
method thus demonstrated.22–24

Fetal rhesus D genotyping

RhD blood group incompatibility between a pregnant
woman and her fetus is a significant problem given the
potential for maternal alloimmunization and subse-
quent hemolytic disease of the newborn. The Rh- blood
group is found among 15% of Caucasians, 3–5% of black
Africans, and is rare among Asian populations. As such,
management of Rh– pregnant women is an important
part of prenatal practice. Fetal DNA within maternal
plasma has been used to determine fetal RhD status
in Rh– pregnant women.19 Unlike more conventional
methods, such as amniocentesis and CVS, the risk of
feto-maternal hemorrhage and further sensitization is
removed using this method. Thus, it provides a basis for
administration of anti-D immunoglobulin as prophy-
laxis only in pregnancies with a confirmed Rh+ fetus,
thereby preventing unnecessary administration of
anti-D immunoglobulin.25 Lo et al. accurately diagnosed
fetal RhD blood type in 45 of 57 cases using plasma
samples from Rh– pregnant women obtained during
the second trimester or later. They concluded that
non-invasive fetal RhD genotyping can be performed
rapidly and reliably using maternal plasma beginning
in the second trimester of pregnancy.19 As part of routine
prenatal care, non-invasive diagnosis of fetal RhD geno-
type is already being performed in the UK, France, and
the Netherlands.26 Several studies regarding the accu-

racy of non-invasive prenatal RhD genotyping have
thus surfaced in recent years using relatively large series
of patients.27–29 In one such study, a total 2838 Rh- preg-
nant women were tested and the diagnosis was concor-
dant in 97.4% of cases.29 Thus, non-invasive prenatal
diagnosis of RhD blood type can be accurately per-
formed; however, there remain a small percentage of
false-positive or false-negative cases.26 Recently, we
have learned more about the RhD locus and its variants.
Although most Rh– Caucasians have a deletion of the
RhD gene, only 18% of Rh– black Africans have the
deletion, with 82% of Rh– black Africans having one of
two RhD variants, the RhD pseudogene (67%) or the
RhD-CdeS hybrid gene (15%).30 These non-functional
variants produce non-specific amplification of the RhD
gene. False-negative cases are either due to a lack of fetal
DNA in plasma during early gestation, or a lack of
sensitivity in detecting low amounts of fetal DNA. At
the present time, a large-scale clinical trial is being
performed in the European Union to identify ways to
reduce false-positive and false-negative results. Devel-
opment of a newer method for determination of fetal
RhD genotype, which takes into account racial differ-
ences, is expected. Prenatal determination of fetal RhD
blood type might prove a clinically useful means by
which to limit unnecessary testing or therapeutic inter-
vention, including administration of antenatal anti-D
immunoprophylaxis, by identifying Rh– fetuses.

Diagnosis of fetal single-gene disorders

Fetal cell-free DNA in maternal plasma has also been
used for prenatal diagnosis of single-gene disorders. In
2000, we achieved non-invasive prenatal DNA diagno-
sis of achondroplasia (ACH).31 This was first report in
which a fetal single-gene disorder was diagnosed using
maternal plasma. ACH is the most common genetic
form of dwarfism and is inherited as an autosomal
dominant gene, although most cases are sporadic.32

Shiang et al. demonstrated that >90% of ACH patients
display a missense mutation in the same locus of the
transmembrane domain of a fibroblast growth factor-
receptor 3 (FGF-R3) gene, comprising a G–A or G–C
transition at nucleotide (nt) 1138.32 We investigated
prenatal DNA diagnosis of ACH using plasma from a
woman at 30 weeks of gestation whose fetus displayed
a suspected short-limb disorder on ultrasonography.
Maternal plasma DNA was extracted and the FGF-R3
sequence with nt1138 for ACH was amplified by PCR
using specific primers and conditions.32 The PCR prod-
ucts were then restricted using SfcI to detect a G–A
transition at nt1138. The ACH mutation creates a SfcI
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site, resulting in two extra bands of 111 and 55 bp upon
digestion. Since this revealed the mutant allele within
DNA from plasma of the pregnant woman, we estab-
lished that the fetus of this pregnant woman had the
G–A transition at nt1138 and was therefore affected by
ACH.31 Another group has reported prenatal diagnosis
of ACH using cell-free DNA in maternal plasma.33

Recently, Amicucci et al. were able to establish a prena-
tal diagnosis of myotonic dystrophy using maternal
plasma.34 Furthermore, prenatal exclusion of cystic
fibrosis,35,36 beta-thalassemia37–39 and congenital adrenal
hyperplasia,40 has been described in at-risk pregnan-
cies through analysis of fetal DNA in maternal blood.

Tsui et al. have developed a method for quantitative
mass spectrometric analysis of fetal single-nucleotide
differences, which may permit the diagnosis of single-
gene disorders. This method may be a potential sensi-
tive approach. Poon et al.41 have further developed an
epigenetic approach to identify a single nucleotide
polymorphic site within a region at the IGF2-HI9 locus
which is methylated when the allele is maternally
inherited and unmethylated when the allele is pater-
nally inherited.

A fetus-derived mutant gene could thus be detected
in maternal plasma for prenatal diagnosis of single-
gene disorders caused by paternally inherited genes
or mutations that are distinguishable from maternally
inherited counterparts. However, this plasma DNA
approach only allows identification of disorders in
which the gene of interest is present in the fetal genome
and absent from the maternal genome. Thus, the use of
fetal DNA for the diagnosis of single-gene disorders
using this method is limited.

Altered fetal DNA concentrations in some
complications of pregnancy

Fetal DNA concentrations are affected by various con-
ditions of pregnancy. Some researchers have evaluated
alterations in fetal DNA concentrations to see if they
might be predictive of complications of pregnancy or
fetal aneuploidies.

Pre-eclampsia

Lo et al. have reported elevated fetal DNA concentra-
tions in the plasma of pregnant women with pre-
eclampsia, and have concluded that circulating DNA
levels might be useful as a marker for diagnosing
and/or monitoring this condition.42 Zhong et al. have
also reported elevated levels of cell-free fetal and
maternal DNA in the plasma of pregnant women with

pre-eclampsia.43 Likewise, we observed increased fetal
DNA levels in the plasma of pregnant women with
pre-eclampsia, but not in the plasma of pregnant
women with fetal growth restriction (FGR) without
pre-eclampsia.44 However, increased fetal DNA levels
have been reported in a select population of pregnant
women in which abnormal uterine arteries were iden-
tified on Doppler ultrasonography.45

The pathogenesis of pre-eclampsia is poorly under-
stood, but it is likely associated with failure of the
uterine vasculature to undergo adequate physiological
remodeling by extravillous trophoblasts.46 Insufficient
invasion of extravillous trophoblasts into the uterine
vasculature results in a failure of placental vascular
resistance to decrease, causing inadequate oxygenation
of blood within the placental intervillous spaces bor-
dering the villous trophoblasts. This may damage the
villous trophoblasts, resulting in the release of DNA
due to cell damage or apoptosis into the intervillous
spaces, and from there into the maternal circulation.47

Moreover, Lau et al.48 have demonstrated impaired
clearance of fetal DNA from maternal plasma in pre-
eclampsia. However, the exact mechanism by which a
quantitative increase in plasma DNA occurs requires
further investigation.

Since fetal DNA in maternal plasma might be a
marker of placental damage, we have previously exam-
ined whether fetal DNA levels in maternal plasma
might be associated with the severity of pre-eclampsia.
Estimated fetal DNA concentrations were 2.25- and
5.06-fold greater among patients with mild and severe
pre-eclampsia, respectively, compared to controls.49 We
have also examined the relationship between pro-
teinuria and hypertension and fetal DNA levels. We
found that both proteinuria and hypertension were
independently and strongly associated with increased
fetal DNA concentrations in maternal plasma, and that
proteinuria was associated with greater increases in
fetal DNA levels than hypertension.49 These findings
support previous reports indicating that proteinuria
is more closely associated with FGR or placental dys-
function than hypertension in pre-eclampsia. Total
DNA concentrations in maternal plasma were further
assessed by analyzing the beta-globin gene, revealing
that beta-globin levels in the plasma of pregnant
women with pre-eclampsia were fourfold higher than
in controls.50 Among women with pre-eclampsia, the
values of cases with FGR were almost double those of
cases without FGR.50 These findings indicate that beta-
globin values in maternal plasma are associated with
the severity of pre-eclampsia.
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Leung et al. have reported elevated fetal DNA con-
centrations in the plasma of pregnant women prior
to the development of pre-eclampsia.51 We have also
reported fetal DNA levels approximately 2.39-fold
greater among pregnancies that went on to develop
pre-eclampsia, compared to matched controls (at
about 20 weeks of gestation).52 Furthermore, beta-
globin levels in the plasma of pregnant women
around 20 weeks prior to the development of clinical
symptoms of pre-eclampsia were approximately
double those of controls.53 When fetal DNA, total
DNA, or both values were used to predict the devel-
opment of pre-eclampsia, detection rates of 33%, 46%
and 62% were achieved, respectively, with an overall
false positive rate of 5%.53 Plasma DNA concentra-
tions can thus potentially be used for early prediction
of pre-eclampsia.

Hyperemesis gravidarum

We have previously investigated whether increased
fetal DNA levels might be detected in the maternal
plasma in cases of hyperemesis gravidarum (HG),
since hyperactivation of the maternal immune system
is thought to destroy trophoblast cells. We therefore
examined the relationship between fetal cell-free
DNA concentrations and clinical severity of HG
among women with varying severities of HG: mild
HG (nausea and vomiting, but no need for hospital-
ization); moderate HG (admission required for intra-
venous hydration but absence of any of the criteria
used to define severe HG); and severe HG (admission
for HG with ketonuria >3+ based on urine dipstick
test and weight loss >3 kg). Blood samples were
obtained from 45 patients with HG for quantification
of fetal DNA concentrations. Fetal DNA levels in
mild, moderate and severe HG were found to be
1.26-, 1.62-, and 2.41-fold greater, respectively, than
controls.54,55

Although the pathogenesis of HG remains obscure,
Minagawa et al. have reported that functional activation
of natural killer and cytotoxic T cells is more prominent
in the blood and uterine decidua of women with HG
than in women with uncomplicated pregnancies.56

Hyperactivation of the maternal immune system may
be responsible for the onset of HG, probably while
maternal immune tolerance to the semiallograft is
being established. As the primary source of fetal DNA
is thought to be placental trophoblasts, this theory is
concordant with the finding that the severity of HG is
related to fetal DNA levels.55

Invasive placenta (abnormal adherence of the placenta)

We have also speculated that invasion of trophoblasts
into the uterine musculature of patients with invasive
placenta might result in increased concentrations of
cell-free fetal DNA within maternal plasma, as tropho-
blasts might be destroyed by the maternal immune
system upon invasion of the myometrium. Fetal DNA
levels were thus assessed in two patients with invasive
placenta. Concentrations of fetal DNA in both cases
were greater than in gestational age-matched controls.
This finding suggests that antenatal detection of inva-
sive placenta might be achievable through analysis of
fetal DNA concentrations in maternal plasma.57 Fur-
thermore, we have also reported on a case of placenta
increta, in which a small part of the placenta remained
adherent despite manual removal of the placenta at the
time of delivery. The patient was followed up by moni-
toring plasma concentrations of beta-human chorionic
gonadotrophin (b-hCG) and fetal DNA levels after
delivery.58 In this patient, fetal DNA was detected until
10 weeks after delivery, whereas plasma b-hCG could
not be detected after 11 days postpartum. Intermittent
vaginal bleeding continued until fetal DNA was no
longer detected in plasma. This finding suggests that
concentrations of fetal DNA in plasma might provide
a useful marker by which to follow patients with
retained placental tissue after delivery.58 These findings
also support the placenta as an important source of
cell-free DNA in maternal plasma.

Preterm delivery

Leung et al. have reported that fetal DNA is present in
greater concentrations within the plasma of pregnant
women who undergo preterm labor, compared to
those who deliver at term.51 This finding has recently
been confirmed in a high-risk population by Farina
et al., with early preterm delivery (<30 weeks) more
likely to occur (with a cumulative probability of 45%)
among women with increased fetal DNA concentra-
tions, compared to only 14% for women with lower
plasma fetal DNA values.59

Fetal aneuploidy

Lo et al. have reported elevated concentrations of cell-
free DNA in the plasma and serum of pregnant women
with a trisomy 21 fetus.60 Zhong et al. have also
reported significantly elevated fetal DNA levels in
pregnancies with trisomy 21, but not in those with
trisomy 18.61 In a matched case–control study, Farina
et al. have confirmed increased fetal DNA levels in
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maternal serum from the second trimester in cases
of Down syndrome with a detection rate of about
20% and a false positive rate of 5%.62 However, Ohashi
et al. and Hromadnikova et al. have reported no differ-
ences in fetal DNA levels within maternal serum
among pregnancies with fetuses of normal karyotype
and those with trisomy 18 or 21.63,64 Spencer et al. have
observed elevated total (maternal and fetal) DNA con-
centrations, but not specifically fetal DNA concentra-
tions, among the plasma of women carrying fetuses
with abnormal karyotypes.65 The reported link
between elevated fetal DNA levels in maternal plasma
or serum and aneuploidy thus remains controversial. If
in fact fetal DNA levels in maternal plasma are signifi-
cantly elevated in pregnant women with aneuploid
fetuses, quantitative analysis of these levels may
provide additional information in the detection of
some fetal chromosomal abnormalities.

Origin of fetal DNA in maternal plasma
or serum

The origin of fetal DNA remains controversial. Possible
sources of fetal DNA in maternal plasma include: (i)
destruction of fetal cells in maternal blood; (ii) trans-
placental transfer of fetal cell-free DNA; or (iii) destruc-
tion of villous trophoblasts bordering the intervillous
spaces.

We have previously observed apoptotic changes in
43% of fetal nucleated red blood cells (NRBC) circulat-
ing within maternal blood, demonstrating that the
increased oxygen concentration of maternal blood
induces apoptotic changes in fetal NRBC transferred to
maternal blood.66,67 We thus speculate that apoptosis
might be the mechanism by which fetal cells are
cleared from the maternal circulation in the absence of
a maternal immune response during pregnancy, and
that fetal cells in maternal blood represent an important
source of fetal DNA in maternal plasma. It has been
reported that tumor cell death is associated with the
release of tumor-derived circulating DNA.68,69 Plasma
DNA concentrations have been found to correlate with
levels of circulating nucleosomes, which are character-
istic by-products of apoptosis.70 However, significantly
reduced concentrations of fetal NRBC have been
observed in maternal blood, compared to fetal DNA
concentrations in maternal plasma.16 The concentration
of fetal DNA in maternal plasma has not been found to
increase in plasma samples extracted from blood after
24 h71 Furthermore, while elevated fetal DNA concen-
trations have been detected in women that undergo

preterm labor,51 elevated numbers of fetal NRBC in
maternal blood are not observed.72 These findings indi-
cate that there is not a direct relationship between
increased fetal cell numbers in maternal blood and
elevated fetal DNA levels in maternal plasma. The
majority of fetal DNA thus does not appear to originate
from fetal cells transferred to maternal blood.

To assess the possibility of transplacental transfer of
fetal cell-free DNA, we have also evaluated the bidirec-
tional transfer of plasma DNA between the maternal
and fetal circulations.47 Cell-free fetal DNA concentra-
tions in maternal plasma were found to far exceed
maternal DNA concentrations in umbilical plasma, and
cell-free maternal DNA concentrations within fetal
blood were unaffected by pre-eclampsia, which is asso-
ciated with trophoblastic damage and elevated fetal
DNA concentrations within the plasma of pregnant
women.42,44,47,49 These findings suggest an unequal
transfer of plasma cell-free DNA among the fetal and
maternal circulations. We have thus concluded only a
limited amount of cell-free fetal DNA is transferred
from the fetal circulation to maternal plasma.

Another possibility is that trophoblasts are the
primary source of fetal DNA. In the placenta, villous
trophoblasts border the intervillous spaces, which are
filled with maternal blood. In pre-eclampsia, insuffi-
cient invasion by extravillous trophoblasts is thought
to result in hypoxic damage to villous trophoblasts,
inducing apoptosis of villous trophoblasts.73 Apoptosis
is frequently detected by TUNEL staining of syncy-
tiotrophoblasts within the placentas of women with
pree-clampsia.74 Cell-free and fragmented DNA is
likely released into the intervillous spaces. Apoptosis
of villous trophoblasts has been observed even in
normal pregnancies and villous trophoblasts are very
important for maintenance of placental function. Func-
tional and structural characteristics of the placenta are
likely responsible for the high concentrations of fetal
DNA found in maternal plasma. Furthermore, as men-
tioned above, we have previously identified elevated
concentrations of fetal DNA within the maternal
plasma of women with placenta previa, particularly in
those with invasive placenta.57,58 In these cases, tropho-
blasts invading the myometrium are attacked and
destroyed by the maternal immune system, resulting
in increased levels of fetal DNA in maternal plasma.
Furthermore, fetal DNA concentrations in maternal
plasma increase as pregnancies advance,16,75 and pla-
cental apoptosis increases with gestational age.76 Circu-
lating fetal DNA has also been found to correlate with
maternal human chorionic gonadotrophin concentra-
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tions,54,77 which is produced by syncytiotrophoblasts.
mRNA of placental origin has also been detected in
maternal plasma, suggesting that fetal nucleic acids,
at least in the form of RNA molecules, are released
from the placenta.78,79 Although the concentration of
fetal cell-free DNA in maternal plasma has not been
observed to correlate with first-trimester placental
volume, as estimated by 3-D ultrasonography,80 it
remains likely that the majority of cell-free fetal DNA
in the plasma of pregnant women originates from
damaged trophoblasts.

Fetal Cells in the Maternal Circulation

Fetal gender and fetal RhD blood type in Rh- pregnant
women can be reliably determined by analyzing mater-
nal plasma. Furthermore, genetic diseases where the
mother does not have the genetic alteration can be
diagnosed by analyzing maternal plasma. However,
plasma analysis cannot be used for prenatal diagnosis
of maternally inherited genetic diseases and aneup-
loidies. Another method of non-invasive prenatal diag-
nosis that does not have these limitations is analysis of
intact fetal cells circulating in maternal blood. Since
only a limited number of fetal cells circulate in maternal
blood, procedures to enrich the cells and enable single
cell analysis with high sensitivity are required. We
outline below the progress made to date on examining
fetal cells from maternal blood.

Fetal cell type

Trophoblasts

It has long been recognized that trophoblasts circulate
in maternal blood. At the turn of the 19th century,
German pathologist Schmorl demonstrated tropho-
blasts in the lungs of women who had died from
eclampsia.81 In 1959, Douglas et al. detected tropho-
blasts in maternal blood using light microscopy.82

However, the limited number of trophoblasts normally
present in maternal blood led to difficulty reproducing
their findings. It is difficult to isolate trophoblasts since
they are large multinucleated cells which become
trapped in the lungs and are rapidly cleared from the
maternal circulation,83 even among women with hyper-
tension in pregnancy. In these women, trophoblasts
have been recovered from the uterine vein, inferior
vena cava84 and peripheral circulation.85 Also, tropho-
blast cell trafficking does not commonly occur in preg-
nancy.86 Furthermore, enrichment of trophoblasts is
difficult due to a lack of specific antibodies.87,88 More-

over, the karyotype of 1% of placental cells differs from
that of the fetus due to confined placental mosa-
icism.89,90 This also limits the use of trophoblasts in
maternal blood as a tool for prenatal genetic diagnosis.
However, despite these obstacles, some diagnostic
success has been achieved through detection of Y chro-
mosome sequences by PCR amplification and fluores-
cence in situ hybridization (FISH) techniques using
trophoblasts from maternal blood.91–93 Hawes et al. have
also accurately detected a fetal beta-globin mutation in
trophoblasts from maternal blood.92

Leukocytes

Through successful enrichment of leukocytes from the
maternal circulation, it has been demonstrated that
fetal leukocytes traverse the placenta. This has made
non-invasive prenatal diagnosis possible. Although
Schmorl discovered the presence of trophoblasts in the
maternal circulation almost a century ago, the use of
fetal cells for prenatal diagnosis was not considered
feasible until 1969 when Walknoska et al. observed cells
with a 46,XY karyotype in cultured lymphocytes from
21 pregnant women, 19 of whom subsequently deliv-
ered male infants.94 This finding was later confirmed
by other investigators in the early 1970s, who also
demonstrated Y-chromatin within cells in the maternal
circulation of women carrying male fetuses.95–101

However, hundreds of maternal cells needed to be ana-
lyzed in order to document the presence of just a few
fetal cells in the maternal circulation, a labor-intensive
process. Thus, these studies required methods to
enrich fetal cells for detection, including use of a nylon
wool column and selective cell culturing.102,103

Herzenberg et al. were the first to use fluorescence-
activated cell sorting (FACS) to successfully enrich fetal
leukocytes from the maternal circulation.104,105 This
group showed a significant correlation between male
gender of the fetus at birth and human leukocyte
antigen HLA-A2 with detection of a quinacrine-
positive Y body in flow-sorted cells. This method,
which requires HLA-typing of the father, was validated
in a subsequent study using PCR amplification of
Y-chromosome-specific sequences after flow-sorting
based on paternal HLA polymorphisms.86 However,
other investigators have had limited success using this
method, even following selection based on several
HLA differences using monoclonal antibodies. One
study found only 18 HLA-informative couples out of
78 screened.106

Moreover, all observations to date suggest a persis-
tence of fetal cells in maternal blood after delivery since
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male DNA has been detected with high frequency
among women with male offspring. Early interest in
fetal leukocytes for prenatal diagnosis was based on
their ability to proliferate in vitro, suggesting that they
might also proliferate in vivo within maternal organs.
However, this approach could produce incorrect
diagnoses in cases of multigravida. An early study
by Schroder et al.107 determined that fetal leukocytes
can still be detected in the maternal circulation up to
1 year after birth. This was determined by mitogen-
stimulation of leukocytes in order to detect Y chroma-
tin in a woman who had previously borne a son. This
has been confirmed by others, in some instances, up to
5 years postpartum.108–110 Moreover, Bianchi et al. have
used FACS-enrichment of T and B lymphocytes to
identify the presence of fetal progenitor cells (CD34+,
38+) in the maternal circulation 27 years postpartum.111

In another study, T lymphocytes (CD3+, 4+, 5+) were
found to persist, for as many as 6 years in one instance,
after birth. These studies indicate that cell types with a
short-life span should be used for prenatal diagnosis
when examining fetal cells in maternal blood.

Fetal erythrocytes/nucleated red blood cells

In 1976, Kleihauer et al. demonstrated the presence of
immature erythrocytes circulating in maternal blood
using a new staining method.112 In 1964, Clayton et al.
observed NRBC more frequently under certain circum-
stances, such as rhesus incompatibility, or following
amniocentesis and termination.113 Since NRBC are one
of the first hemopoietic cell lines produced during fetal
development and are abundant in the fetal circulation
during early pregnancy,114 they are detectable early in
pregnancy. When blood pools at the interface between
fetal and maternal tissue, transfer of erythrocytes,
including NRBC, into the maternal circulation pre-
dominates over other cell types, including leukocytes
and trophoblasts. NRBC are mononuclear and rela-
tively well differentiated. They also have a short
lifespan compared to fetal lymphocytes115 given their
limited proliferative capacity, making them unlikely
to persist throughout pregnancy. These characteristics
make NRBC particularly suitable for non-invasive pre-
natal diagnostic testing.

In 1990, Bianchi et al. discovered a way to enrich
NRBC containing fetal DNA for FACS using a mono-
clonal antibody against the transferrin receptor (CD71),
which is highly expressed on erythroblasts.116 The
ability to do so has since been confirmed by other
investigators using a variety of monoclonal antibodies
and cell enrichment techniques.117–120 One such method

is magnetic cell sorting (MACS) using an antibody
to CD71.121 Ganshirt-Ahlert et al. have used MACS fol-
lowing NRBC enrichment to correctly identify fetal
aneuploidy.84,122 These successful attempts at NRBC
enrichment and fetal determination demonstrate the
potential of using NRBC for non-invasive prenatal
diagnosis.

However, isolation of fetal cells from the maternal
circulation presents considerable challenges, given
their limited numbers. Fetal cells are estimated to range
from 1 in 105 to 1 in 109 in maternal blood.120,123 Hamada
et al. used FISH on mononuclear cells isolated by
density gradient separation from maternal blood to find
Y-chromosome-bearing cells.124 They needed to screen
as many as 144 000 nuclei to find a single fetal cell
containing DNA that hybridized to the Y chromosome.
An increased frequency of fetal cell isolation with ges-
tational age was observed, from less than 1 in 105 during
the first trimester to 1 in 104 at term. Bianchi et al. then
examined the number of fetal-cell DNA equivalents
present in maternal blood by PCR amplification of a
Y-chromosome-specific sequence and found approxi-
mately one fetal cell per 1 mL of maternal blood.125 Thus,
although the presence of fetal NRBC in maternal blood
is well established and they are considered the best
target for non-invasive prenatal diagnosis at the present
time, their detection remains problematic.

Undoubtedly, some NRBC, even after fetal cell
enrichment, are of maternal origin.114,126–128 De Graff
et al. have used fetal hemoglobin to differentiate mater-
nal from fetal NRBC; however, 20% of all HbF-positive
NRBC are still of maternal origin.129 Recently, Troeger
et al. used single cell PCR analysis on single microma-
nipulated NRBC identified by May–Grunwald Giemsa
(MGG) staining to demonstrate that almost half of
NRBC in maternal blood are of fetal origin.130 These
findings suggest that the origin of each cell must be
confirmed for reliable clinical use when performing
non-invasive prenatal diagnosis through analysis of
cells recovered from maternal blood.

Another approach is to culture NRBC. If selective
induction of NRBC proliferation occurs in vitro, fetal
genetic material can be amplified for non-invasive pre-
natal diagnosis. Lo et al.131 were the first to culture mono-
nuclear cells and to isolate fetal erythroid progenitors
from the peripheral blood of pregnant women. Subse-
quently, other investigators have successfully cultured
colony-forming units, as well as erythroid and mature
burst-forming units and erythroid colonies, from fetal
hemopoietic progenitors enriched from maternal
blood.132 However, these results have not been repli-
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cated by other investigators, and thus far selective
amplification of fetal over maternal hemopoietic pro-
genitors has not been successful.133,134

Physiological variation of the
maternal circulation

Data indicating the timing of fetal cell trafficking into
the maternal circulation exists. In mice, fetal cell
migration is a rare event.135 In general, it is thought
that the proportion of NRBC to non-nucleated eryth-
rocytes diminishes in fetal blood as gestation
progresses in humans. In accordance with placental
growth, the interface between fetal and maternal
tissue expands, such that more fetal cells may traverse
the placental barrier in the early stages of gestation. In
a study of two pregnant women bearing male fetuses
following in vitro fertilization, Y-chromosome-specific
DNA was detected as early as 33 and 40 days gesta-
tion.136,137 PCR amplification of a Y-chromosome-
specific sequence has been achieved in maternal blood
between 6 and 12 weeks in two separate studies.124,138

Other studies using flow-sorted NRBC have demon-
strated reliable detection of fetal DNA at less than
16 weeks gestation.139

It has been reported that more fetal cells are recov-
ered when the fetus is aneuploid.125,140 This might be
associated with the ultrastructure of the placenta in
pregnancies affected by aneuploidy.141,142 It might also
be associated with erythrocyte size, which differs from
that in cytogenetically normal individuals of the same
gestational age.143 Aneuploid fetal cells express CD71144

or FB3-2 and H3-3145 antigens. Simpson and Elias
demonstrated, using FISH analysis with chromosome-
specific probes, that, on average, 19.6% of enriched
cells from maternal samples were trisomic fetal cells
(ranging from 0 to 74%).146 Using the same method,
Ganshirt-Ahlert et al. found that 10% of the final popu-
lation of enriched cells were trisomic fetal cells.122

Increased proportions of fetal cells have been
detected in women with pre-eclampsia, which follows
historical observations by Schmorl81 and Clayton
et al.113 Holzgreve et al. have also noted a large increase
in the number of NRBC (38 vs 7) in male-bearing preg-
nancies with pre-eclampsia.147 Other factors that likely
influence the degree of transfer of fetal cells into
the maternal circulation are multiple gestation, feto-
maternal blood incompatibilities, and other maternal
complications, such as diabetes or bleeding. Another
issue is the possible influence of autoimmune diseases,
such as scleroderma.148

Various methods to enrich NRBC from
maternal blood

Nucleated red blood cells are thought to hold promise
for non-invasive diagnosis using fetal cells from the
maternal circulation; however, fetal NRBC are rarely
detected in the maternal circulation. Thus, enrichment
of NRBC is essential. Methods for enrichment of NRBC
include FACS, MACS, density gradient centrifugation,
charged flow separation, selective erythrocyte lysis,
and the lectin base method. Efficient selection of NRBC
is essential for analysis of fetal genetic abnormalities.
Although a number of reports describe successful
enrichment of NRBC, a preferred method has yet to be
established.

FACS and MACS

Fluorescence-activated cell sorting and MACS were
preferred methods used by researchers in the 1990s for
fetal cell enrichment. Both techniques rely on antigen–
antibody recognition using NRBC-specific monoclonal
antibodies. In order to perform FACS, the antibodies
are first labeled with a fluorescent dye, while they are
labeled with magnetic beads for MACS. As previously
mentioned, Bianchi et al. first used a monoclonal anti-
body against CD71 to enrich NRBC in 1990.116 In doing
so, they sorted CD71-positive cells from the blood
of pregnant women at 12–17 weeks gestation, after
which they performed PCR amplification of a
Y-specific sequence in the sorted cells. They detected
the Y-specific sequence in 75% of women bearing male
fetuses. However, after selection using the CD71 anti-
body, the purity of NRBC remained low. Subsequent
to this, their group established a new NRBC marker,
a monoclonal antibody against gamma-hemoglobin.
This marker markedly improved the purity of isolated
NRBC.149,150 Ganshirt-Ahlert et al. employed MACS
separation using magnetic beads combined with anti-
body against CD71122,151 to successfully identify fetal
cells with chromosomal abnormalities using FISH
in blood samples from 15 pregnant women bearing
fetuses with chromosomal abnormalities. Some inves-
tigators have also used glycophorin A for enrichment
of NRBC.152 Purity can be further enhanced by MACS
depletion of maternal cells and fetal lymphocytes with
anti-CD45 prior to positive selection for CD71-positive
cells. Using this method, approximately 20 fetal cells
are obtained from a 20 mL maternal blood sample.153

However, even following double MACS separa-
tion, the purity of NRBC remains low, and a pro-
longed interval is required for NRBC detection. The
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advantages of using MACS include the short time
required for the procedure itself and its relatively low
cost. A disadvantage is that selection is based on only
one criterion, thus explaining the low purity of NRBC
obtained.

In order to improve the recovery of NRBC, Bianchi
et al. primarily examined samples collected after termi-
nation procedures, which are thought to increase the
number of NRBC in maternal blood. They recovered
fetal NRBC from maternal blood in all post-termination
samples.154–158 We further observed an improvement
in the recovery of NRBC by MACS negative selection
of CD45 prior to FACS separation using gamma-
hemoglobin antibody.150

National Institute of Child Health and Human
Development Fetal Cell Isolation Study

Based on the success of fetal NRBC detection using
FACS-FISH and/or MACS-FISH analysis, NRBC were
thought to have the potential for non-invasive fetal
diagnosis. In the USA, to examine this possibility, a
large-scale multicenter study funded by the National
Institute of Health, known as the National Institute of
Child Health and Human Development Fetal Cell
Isolation Study, otherwise known as NIFTY, was per-
formed between 1995 and 1999.159 The purpose of the
study was to assess the reliability of non-invasive pre-
natal diagnosis of fetal aneuploidy using NRBC from
the maternal circulation. Subjects thought to be at risk
of carrying an aneuploid fetus (>35 years of age), or
with serum screening or sonographic results sugges-
tive of aneuploidy, about to undergo an invasive diag-
nostic procedure were selected. The results were
compared with the karyotype obtained following the
invasive procedure as the gold standard. A very low
sensitivity of fetal cell detection was obtained in this
study, in which over 2700 maternal blood samples were
examined. The sensitivity ranged from 13% using
FACS to 44% using MACS. Thus, MACS separation
yielded a better recovery of fetal NRBC than FACS
separation.159 Although the purity of NRBC was high
following FACS separation using gamma-hemoglobin
antibody, fewer NRBC were recovered. In contrast, the
greater number of cells separated using MACS led
to improved recovery of NRBC, despite an overall
decrease in the proportion of NRBC to total cells col-
lected. Thus, recovery of NRBC using MACS was
slightly better than FACS. However, fetal NRBC were
difficult to detect with both methods. This is likely due
to the extremely low number and proportion of fetal

NRBC in maternal blood. Consequently, this study con-
cluded that separation of NRBC based on interactions
between NRBC-specific antigens and their correspond-
ing antibodies is limited.

Density gradient centrifugation and other methods

To separate NRBC, removal of mature erythrocytes is a
very important initial step. Methods to do so include
bulk separation, lysis, and various forms of selective
centrifugation. Since efficient separation of NRBC
using the cell-lysis method has not been achieved,
more recent protocols start with some form of density
gradient centrifugation intended to enrich a popula-
tion of mononuclear cells. In the early 1990s, a
1.077 g/mL density gradient was primarily used.
However, in 1993, Bhat et al. showed a 25-fold
enhancement of NRBC isolation using a triple density
gradient.160 Using this protocol, fetal NRBC were suc-
cessfully isolated from the maternal blood of aneuploid
pregnancies in the second and third trimesters.122

In 1995, Takabayashi et al.161 used discontinuous
gradients to enhance enrichment. They placed 2-mL
maternal venous blood samples on double density gra-
dients of 1.075 and 1.085 g/mL Percoll solution. Fol-
lowing centrifugation, cells with the targeted densities
were placed on slides and stained with May–Giemsa
for morphological NRBC identification. Takabayashi
et al. identified a large proportion of NRBC among
the nucleated cells obtained using this approach. An
average of 4.1 NRBC (ranging from 1 to 22) were iden-
tified per sample analyzed, from which fetal sex could
be accurately determined in 10 out of 11 samples.161

NRBC were detected as early as 8 weeks gestation.
Later, we evaluated the effects of various density gra-
dients on recovery of NRBC. We used FACS separation
based on gamma-hemoglobin and subsequent FISH
analysis.150 The number of NRBC recovered using a
gradient of 1.090 g/mL was threefold greater than with
a gradient of 1.085 g/mL. Furthermore, we recovered
twice as many NRBC using 1.119 g/mL, compared to
1.090 g/mL158 Moreover, Voullarie et al. examined the
density of NRBC using a continuous Percoll density
gradient and revealed that the majority of NRBC are
denser than white blood cells.162 Some investigators
prefer to use Ficoll 1119.163,164 Given that NRBC have
greater density than white blood cells, it is necessary to
use increased density gradients to recover a high yield
of NRBC.

Other methods used for enrichment of fetal cells
include avidin–biotin columns, magnetic ferro-fluids,
and cell culturing to increase yields. To enhance enrich-
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ment, some investigators have sought more specific
antibodies or biochemical markers, while some have
relied on chemical assays for analysis, such as 2,3-
biophosphoglycerate (BPG),118 carbonic anhydrase
(CA)129,165 and thymidine kinase (TK).166 BPG is thought
to identify fetal hemoglobin by exposing the fetal
haem-iron to oxidization in a sequential peroxidase
reaction, thereby forming a colored substrate-
associated complex. Using a fluorescent TK thymidine
analog, fetal cells can be differentiated from adult cells
based on TK enzyme activity, since enzyme activity is
virtually absent in adult cells. Fetal NRBC are also less
susceptible to ammonium chloride lysis than adult
NRBC, since CA activity is fivefold less, and acetozo-
lamide permeability approximately 10-fold greater.
Other specific antibodies include HAE9167 and those
developed by Genzyme (FB3-2, 2–6B/6 and H3-3).145

The possibility of using an erythropoietin assay has
also been explored.168 However, at the present time,
most researchers still either use anti-CD71 or anti-
gamma globin antibodies for enrichment of NRBC.

Other investigators have isolated very high numbers
of NRBC by charge flow separation (CFS),169,170 which
permits sorting of cells according to their characteristic
surface charge densities. Using this method, several
thousand NRBC (average: 6910) were enriched from a
20 mL maternal venous blood sample in one study,
from which both fetal sex and ploidy could be accu-
rately examined. However, this result has not been
repeated.

Lectin-based method

A more recent study has used a galactose-specific
lectin for isolation of fetal NRBC from maternal
blood.171 This method is based on the observation that
erythroid precursor cells express large numbers of
galactose molecules on their cell surface, associated
with development and maturation of the cell. In
this study, they used soybean agglutinin (SBA) as a
galactose-specific lectin to enrich high level galactose-
expressing erythroid cells, from which they recovered
one to several hundred NRBC (mean � SD: 7.8 � 8.5)
in 2.3 mL of peripheral blood from 96% of pregnant
women between 6 and 27 weeks. The isolated NRBC
were then analyzed using a Y-chromosome-specific
FISH probe in eight cases carrying male fetuses, for
which Y-signals were detected in all eight cases and
more than half of all NRBC collected were of fetal
origin. Subsequently, Babochkina et al. compared the
lectin method with MACS/CD71 separation, and
revealed an eightfold increase in NRBC recovery using

this method.172 Thus, the lectin method is the most
promising method for NRBC separation to date. Using
this method, we evaluated how many NRBC could be
separated from the blood of normal pregnant women at
early gestation.173 We detected NRBC in all 55 samples
examined (1–82 cells/sample). The median number of
NRBC detected in normal pregnancy was 12.5 cells per
6 mL of maternal blood. This finding confirms that
NRBC circulate in the blood of pregnant women. In
order to identify the NRBC by microscopy, we manu-
ally screened two slides per case, which was very labor
intensive. However, following enhancement using the
lectin-based method, the majority of contaminant cells
were non-nucleated erythrocytes. The burden of NRBC
identification could be considerably reduced by this
method. Again, the lectin-based method seems supe-
rior to other methods, such as FACS and MACS.

Autoimage analyzer

Since enrichment of NRBC produces a low purity
sample, the requirement for subsequent screening is
labor intensive. This has created interest in automated
detection systems, using laser-mediated scanning or a
charge-coupled device (CCD) with a video computer-
aided capture and dot counting analysis system. Zheng
et al.174 and Ferguson et al.175 have used an autodetec-
tion system in the screening of NRBC. In their study,
they stained NRBC with fluorescence-conjugated anti-
fetal hemoglobin antibodies. Following detection of
NRBC, FISH analysis can then be performed to diag-
nose fetal aneuploidies. However, this system is still
plagued by difficulties, since morphological identifica-
tion of NRBC is still required and the optimal staining
conditions have yet to be determined.

Recently, a new system has been developed. Follow-
ing lectin-based separation, the enriched cells are
stained and the entire slide examined under micros-
copy and the images loaded into a computer using a
CCD camera, from which NRBC are identified based
on their morphology. Takabayashi et al. have developed
a similar system. This computer system identifies
nucleated cells in images from the CCD camera and
evaluates the morphology of each cell. After selecting
candidate NRBC, cells on the slideglass are highlighted
by the computer and manual determination of the cell
type is performed. Using the system, we are currently
comparing the rate of this system for identification of
NRBC with manual detection. At present, we use the
lectin-based method to separate NRBC. Using samples
obtained by lectin separation, high efficiency of the
autoimage analyzer is expected given that the majority
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of contaminant cells are non-nucleated erythrocytes. It
is likely that the efficiency and reliability of the image
analyzer system is sufficient for use in routine NRBC
detection. Further development of this system will save
time in the detection of NRBC and allow processing
of samples with strong reliability. This approach is
becoming more feasible as the image-processing capac-
ity of computers improves.

DNA analysis

In the late 1980s, FISH and PCR methods became avail-
able. Because these methods are sensitive enough to
analyze single cells, non-invasive prenatal diagnosis
using maternal blood became all the more possible.
Two methods are now used to analyze fetal cells. One
is the FISH method, which can analyze fetal gender
and aneuploidies. Another is the PCR method, which
permits analysis of mutations in single-gene disorders,
as well as fetal gender and RhD blood type.

FISH analysis

Since Price et al. first reported diagnosis of fetal trisomy
21 by isolation of NRBC from maternal blood,120 the
FISH method has been used for non-invasive prenatal
diagnosis of fetal aneuploidies, as well as fetal gender.
In our own experiments, analysis of maternal blood
samples by FISH following termination procedures
resulted in detection of NRBC by positive staining for
gamma-hemoglobin, all of which were fetal in origin.176

However, when blood samples from normal pregnant
women were examined, the majority of NRBC were
not suitable for FISH. We then learned that 43% of the
fetal NRBC collected from maternal blood were apop-
totic.156 When NRBC migrate into maternal blood, they
circulate under relatively high oxygen tension. As a
result, they are more subject to apoptosis67 and the size
of their nuclei is diminished.177 This might be why FISH
signals are not detected within nuclei. This problem
warrants further investigation. Recently, we have
developed a modified method of FISH in NRBC with
highly condensed nuclei. At any rate, the ability to
perform FISH on NRBC recovered from maternal
blood makes non-invasive prenatal diagnosis of aneu-
ploidies more feasible.

PCR analysis

Through PCR amplification, we can evaluate fetal DNA
in NRBC-enriched samples. In fact, Bianchi et al. have
reported the presence of a Y-chromosome specific
sequence in 75% of male-bearing maternal blood
samples.116 However, this approach is not considered

sufficiently accurate for use in clinical practice. For
diagnostic purposes, individual NRBC of fetal origin
must be examined, since half of NRBC are maternal in
origin. Unfortunately, thus far, micromanipulation
remains the only method by which to isolate individual
NRBC for analysis.

In 1995, Takabayashi et al. pioneered a micromanipu-
lation method by which to isolate NRBC based on mor-
phology. They accurately determined fetal sex in 10 out
of 11 cases.161 We subsequently used this NRBC sepa-
ration method to retrieve individual NRBC and diag-
nose fetal single-gene disorders, such as Duchenne
type muscular dystrophy and ornithine transcarbamy-
lase deficiency.178,179 We illustrated that PCR can be per-
formed on genetic material obtained from a single cell,
a finding made possible by whole genome random
primer extension preamplification (PEP). As a result,
we were then able to determine whether a NRBC was
of fetal origin using differences in ZFX/ZFY loci (to
diagnose the gender of the cell), and also to examine
particular genes of interest. Although we were the first
to diagnose a fetal single-gene disorder, over 100 cycles
of PCR amplification, including PEP and subsequent
PCR of the target genes, were required to diagnose
the origin of the cell, as well as the DNA alterations
leading to one or more single-gene disorders. Thus,
there are definite limitations to use of this technology
for clinical applications. Cheung et al. have also prena-
tally diagnosed hemoglobinopathies using multiple
singly manipulated fetal NRBC identified by antifetal
hemoglobin staining.180 In order to perform PCR,
several cells need to be retrieved in order to circum-
vent the problem of allele dropout, a phenomenon that
frequently occurs when using single or low template
copies for PCR.

Thus, while PCR methods are highly sensitive, PCR
amplification errors involving a single base and allele
dropouts may still occur.

Future prospects

In Japan, several groups have been engaged in research
using fetal NRBC from maternal blood for non-invasive
prenatal diagnosis as mentioned above. As such, I orga-
nized a research consortium (The Study Group for
Fetal DNA Diagnosis from Maternal Blood) with Dr
Kitagawa and Dr Takabayashi in 2006. We examined
the success of NRBC separation among each group and
attempted to design an optimal protocol. As a result of
this collaboration, we have recently developed a new
method for NRBC separation for subsequent genetic
analysis by FISH. To assess the efficiency of NRBC
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separation using the galactose-specific lectin method,
we evaluated the recovery and enrichment of NRBC
from 55 maternal blood samples from pregnant
women, which was successful in every case. The mean
number of NRBC recovered was 12.5 NRBC per 6 mL
of blood from normal pregnant women.173 Further-
more, we optimized our FISH method and performed
fetal gender determination in 20 normal pregnant
women (median: 15; range: 10–18 weeks). Fetal gender
analysis using FISH in 20 pregnant women was suc-
cessful by comparison with fetal gender determination
by analysis of maternal plasma, thus confirming the
presence of fetal NRBC in maternal blood. In male-
bearing pregnancies, XY cells were detectable in 45% of
NRBC. Thus, we speculate that almost half of all NRBC
circulating in maternal blood are of fetal origin.181

We have recently begun a multicenter study, named
the FeDiM study, to evaluate the accuracy of non-
invasive prenatal diagnosis of fetal gender, trisomy-21,
18, and 13. If the results of this study are encouraging
and the reliability of this method can be confirmed, our
method might be used for clinical applications. We
therefore believe that non-invasive prenatal diagnosis
will be used for routine prenatal testing in the near
future.

Conclusion

Non-invasive prenatal diagnosis of fetal aneuploidies
or genetic disorders has become a realistic goal for
routine prenatal care. Fetal DNA can be detected in
maternal plasma after 7 weeks. Fetal DNA within
plasma can be used for accurate fetal gender determi-
nation and fetal RhD blood typing in Rh– pregnant
women. Furthermore, it can be applied to the identifi-
cation of paternally inherited diseases and sporadic
genetic disorders. However, fetal DNA from maternal
plasma cannot be used to diagnose maternally inher-
ited diseases and fetal aneuploidies.

Thus, analysis of NRBC in maternal blood has some
advantages. If sufficient NRBC can be recovered from
the blood of pregnant women, fetal cells can be used
for the prenatal diagnosis of every kind of genetic dis-
order. Recent progress with regard to lectin separation,
autoimage analyzing, and FISH technology, makes the
possibility of non-invasive prenatal diagnosis of aneu-
ploidy more likely. The development of techniques for
non-invasive prenatal diagnosis using cell-free DNA
and fetal cells in maternal blood will contribute greatly
to the field of perinatal medicine and result in safer
antenatal care.
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